Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Diabetologia ; 66(11): 1971-1982, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37488322

RESUMO

Type 1 diabetes results from the poorly understood process of islet autoimmunity, which ultimately leads to the loss of functional pancreatic beta cells. Mounting evidence supports the notion that the activation and evolution of islet autoimmunity in genetically susceptible people is contingent upon early life exposures affecting the islets, especially beta cells. Here, we review some of the recent advances and studies that highlight the roles of these changes as well as antigen presentation and stress response pathways in beta cells in the onset and propagation of the autoimmune process in type 1 diabetes. Future progress in this area holds promise for advancing islet- and beta cell-directed therapies that could be implemented in the early stages of the disease and could be combined with immunotherapies.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Autoimunidade/fisiologia , Ilhotas Pancreáticas/metabolismo , Predisposição Genética para Doença
2.
iScience ; 26(5): 106664, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37168570

RESUMO

SNARE-mediated membrane fusion plays a crucial role in presynaptic vesicle exocytosis and also in postsynaptic receptor delivery. The latter is considered particularly important for synaptic plasticity and learning and memory, yet the identity of the key SNARE proteins remains elusive. Here, we investigate the role of neuronal synaptosomal-associated protein-23 (SNAP-23) by analyzing pyramidal-neuron specific SNAP-23 conditional knockout (cKO) mice. Electrophysiological analysis of SNAP-23 deficient neurons using acute hippocampal slices showed normal basal neurotransmission in CA3-CA1 synapses with unchanged AMPA and NMDA currents. Nevertheless, we found theta-burst stimulation-induced long-term potentiation (LTP) was vastly diminished in SNAP-23 cKO slices. Moreover, unlike syntaxin-4 cKO mice where both basal neurotransmission and LTP decrease manifested changes in a broad set of behavioral tasks, deficits of SNAP-23 cKO are more limited to spatial memory. Our data reveal that neuronal SNAP-23 is selectively crucial for synaptic plasticity and spatial memory without affecting basal glutamate receptor function.

3.
Cell Rep Med ; 4(5): 101051, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37196633

RESUMO

Alterations in the microbiome correlate with improved metabolism in patients following bariatric surgery. While fecal microbiota transplantation (FMT) from obese patients into germ-free (GF) mice has suggested a significant role of the gut microbiome in metabolic improvements following bariatric surgery, causality remains to be confirmed. Here, we perform paired FMT from the same obese patients (BMI > 40; four patients), pre- and 1 or 6 months post-Roux-en-Y gastric bypass (RYGB) surgery, into Western diet-fed GF mice. Mice colonized by FMT from patients' post-surgery stool exhibit significant changes in microbiota composition and metabolomic profiles and, most importantly, improved insulin sensitivity compared with pre-RYGB FMT mice. Mechanistically, mice harboring the post-RYGB microbiome show increased brown fat mass and activity and exhibit increased energy expenditure. Moreover, improvements in immune homeostasis within the white adipose tissue are also observed. Altogether, these findings point to a direct role for the gut microbiome in mediating improved metabolic health post-RYGB surgery.


Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Resistência à Insulina , Camundongos , Animais , Tecido Adiposo Marrom , Obesidade/cirurgia , Metabolismo Energético
4.
Diabetes Obes Metab ; 25(6): 1714-1722, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36811214

RESUMO

AIM: To assess whether the beta-cell function of inpatients undergoing antidiabetic treatment influences achieving time in range (TIR) and time above range (TAR) targets. MATERIALS AND METHODS: This cross-sectional study included 180 inpatients with type 2 diabetes. TIR and TAR were assessed by a continuous glucose monitoring system, with target achievement defined as TIR more than 70% and TAR less than 25%. Beta-cell function was assessed by the insulin secretion-sensitivity index-2 (ISSI2). RESULTS: Following antidiabetic treatment, logistic regression analysis showed that lower ISSI2 was associated with a decreased number of inpatients achieving TIR (OR = 3.10, 95% CI: 1.19-8.06) and TAR (OR = 3.40, 95% CI: 1.35-8.55) targets after adjusting for potential confounders. Similar associations still existed in those participants treated with insulin secretagogues (TIR: OR = 2.91, 95% CI: 0.90-9.36, P = .07; TAR, OR = 3.14, 95% CI: 1.01-9.80) or adequate insulin therapy (TIR: OR = 2.84, 95% CI: 0.91-8.81, P = .07; TAR, OR = 3.24, 95% CI: 1.08-9.67). Furthermore, receiver operating characteristic curves showed that the diagnostic value of the ISSI2 for achieving TIR and TAR targets was 0.73 (95% CI: 0.66-0.80) and 0.71 (95% CI: 0.63-0.79), respectively. CONCLUSIONS: Beta-cell function was associated with achieving TIR and TAR targets. Stimulating insulin secretion or exogenous insulin treatment could not overcome the disadvantage of lower beta-cell function on glycaemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Hipoglicemiantes/uso terapêutico , Automonitorização da Glicemia , Estudos Transversais , Pacientes Internados , Glicemia/análise , Insulina/uso terapêutico
5.
Diabetes Obes Metab ; 25(2): 479-490, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36239189

RESUMO

AIM: To assess the effects of faecal microbial transplant (FMT) from lean people to subjects with obesity via colonoscopy. MATERIAL AND METHODS: In a double-blind, randomized controlled trial, subjects with a body mass index ≥ 35 kg/m2 and insulin resistance were randomized, in a 1:1 ratio in blocks of four, to either allogenic (from healthy lean donor; n = 15) or autologous FMT (their own stool; n = 13) delivered in the caecum and were followed for 3 months. The main outcome was homeostatic model assessment of insulin resistance (HOMA-IR) and secondary outcomes were glycated haemoglobin levels, lipid profile, weight, gut hormones, endotoxin, appetite measures, intestinal microbiome (IM), metagenome, serum/faecal metabolites, quality of life, anxiety and depression scores. RESULTS: In the allogenic versus autologous groups, HOMA-IR and clinical variables did not change significantly, but IM and metabolites changed favourably (P < 0.05): at 1 month, Coprococcus, Bifidobacterium, Bacteroides and Roseburia increased, and Streptococcus decreased; at 3 months, Bacteroides and Blautia increased. Several species also changed significantly. For metabolites, at 1 month, serum kynurenine decreased and faecal indole acetic acid and butenylcarnitine increased, while at 3 months, serum isoleucine, leucine, decenoylcarnitine and faecal phenylacetic acid decreased. Metagenomic pathway representations and network analyses assessing relationships with clinical variables, metabolites and IM were significantly enhanced in the allogenic versus autologous groups. LDL and appetite measures improved in the allogenic (P < 0.05) but not in the autologous group. CONCLUSIONS: Overall, in those with obeisty, allogenic FMT via colonoscopy induced favourable changes in IM, metabolites, pathway representations and networks even though other metabolic variables did not change. LDL and appetite variables may also benefit.


Assuntos
Resistência à Insulina , Obesidade Mórbida , Humanos , Qualidade de Vida , Obesidade/complicações , Obesidade/terapia , Colonoscopia , Método Duplo-Cego
6.
Cardiovasc Diabetol ; 21(1): 283, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536433

RESUMO

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) usually have higher blood viscosity attributed to high blood glucose that can decrease blood supply to the pancreas. A mild increase in blood pressure (BP) has been reported as a potential compensatory response that can maintain blood perfusion in the islet. However, how BP influences beta-cell function in T2DM subjects remains inconsistent. This study aimed to examine the relationship between BP and beta-cell function in patients with T2DM under different HbA1c levels. METHODS: This is a cross-sectional study of 615 T2DM patients, whose clinical data were extracted from hospital medical records. Beta-cell function was assessed by insulin secretion-sensitivity index-2 (ISSI2). Multivariable linear regression analysis and restricted cubic splines (RCS) analysis were performed to identify the association between systolic BP (SBP) and ISSI2. Mediation analysis was performed to determine whether higher SBP could reduce blood glucose by enhancing beta-cell function. RESULTS: After adjustment of potential confounders, in participants with HbA1c ≥ 10%, the SBP between 140 to150 mmHg had the highest log ISSI2 (b = 0.227, 95% CI 0.053-0.402), an association specific to participants with < 1 year duration of diabetes. RCS analyses demonstrated an inverted U-shaped association between SBP and ISSI2 with the SBP at 144 mmHg corresponding to the best beta-cell function. This higher SBP was "paradoxically" associated with lower 2 h postprandial blood glucose (PBG) when SBP < 150 mmHg that was almost exclusively mediated by ISSI2 (mediating effect = - 0.043, 95%CI - 0.067 to - 0.018; mediating effect percentage = 94.7%, P < 0.01). SBP was however not associated with improvement in ISSI2 or 2 h PBG in participants with HbA1c < 10%. CONCLUSIONS: In early stage of diabetes, a slightly elevated SBP (140-150 mmHg) was transiently associated with better beta-cell function in T2DM patients with HbA1c ≥ 10% but not in those with HbA1c < 10%.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Glicemia/análise , Pressão Sanguínea , Hemoglobinas Glicadas , Estudos Transversais
7.
Nat Commun ; 13(1): 6512, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316316

RESUMO

Enhancing pancreatic ß-cell secretion is a primary therapeutic target for type-2 diabetes (T2D). Syntaxin-2 (Stx2) has just been identified to be an inhibitory SNARE for insulin granule exocytosis, holding potential as a treatment for T2D, yet its molecular underpinnings remain unclear. We show that excessive Stx2 recruitment to raft-like granule docking sites at higher binding affinity than pro-fusion syntaxin-1A effectively competes for and inhibits fusogenic SNARE machineries. Depletion of Stx2 in human ß-cells improves insulin secretion by enhancing trans-SNARE complex assembly and cis-SNARE disassembly. Using a genetically-encoded reporter, glucose stimulation is shown to induce Stx2 flipping across the plasma membrane, which relieves its suppression of cytoplasmic fusogenic SNARE complexes to promote insulin secretion. Targeting the flipping efficiency of Stx2 profoundly modulates secretion, which could restore the impaired insulin secretion in diabetes. Here, we show that Stx2 acts to assist this precise tuning of insulin secretion in ß-cells, including in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Sintaxina 1/genética , Sintaxina 1/metabolismo , Insulina/metabolismo , Exocitose/fisiologia , Proteínas SNARE/metabolismo , Membrana Celular/metabolismo
8.
Methods Mol Biol ; 2473: 79-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819760

RESUMO

Due to the ultra-thin optical sectioning capability of exclusively illuminating space at the interface where total internal reflection occurs, the TIRF microscope has been indispensable for monitoring biological processes adjacent to the plasma membrane with excellent signal-to-noise ratio. Insulin-containing granules fuse with the plasma membrane to release contents within hundreds of milliseconds, which involves well-orchestrated assembly of SNARE complex and associated proteins. A video-rate multiple-color TIRF microscope offers the unique opportunity to visualize single secretory granule docking and fusion dynamics and can also map its regulators with high spatiotemporal resolution. Here, we describe the basic principles and practical implementation of a fast dual-color TIRF microscope, detailing a how-to guide on imaging and analysis of insulin granule dynamics in human ß-cells.


Assuntos
Células Secretoras de Insulina , Insulina , Grânulos Citoplasmáticos/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Microscopia de Fluorescência/métodos , Vesículas Secretórias/metabolismo
9.
Cell Mol Gastroenterol Hepatol ; 13(2): 599-622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34610499

RESUMO

BACKGROUND: Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS: We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS: Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS: The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.


Assuntos
Pâncreas , Pancreatite , Células Acinares/metabolismo , Animais , Autofagossomos , Autofagia , Camundongos , Pancreatite/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/farmacologia
10.
Front Cardiovasc Med ; 8: 735679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621801

RESUMO

Background: Both baseline blood pressure (BP) and cumulative BP have been used to estimate cardiovascular event (CVE) risk of higher BP, but which one is more reliable for recommendation to routine clinical practice is unclear. Methods: In this prospective study, conducted in the Kailuan community of Tanshan City, China, a total of 95,702 participants free of CVEs at baseline (2006-2007) were included and followed up until 2017. Time-weighted cumulative BP that expresses the extent of cumulative BP exposure is defined as the sum of the mean of two consecutive systolic or diastolic BP times the interval between the two determinations, then normalized by the total follow-up duration. Incident CVEs during 2006-2017 were confirmed by review of medical records. We performed a competing risk regression analysis to assess CVE risk of the different durations of higher BP exposure. ROC analysis was performed to assess the predictive value of higher BP on CVE occurrence. Results: We found that when the risk of higher BP on CVE occurrence was estimated based on time-weighted cumulative BP, the hazard ratios (HRs) increased with the increase in duration of higher BP exposure in each of the four BP groups: <120/<80, 120-129/<80, 130-139/80-89, and ≥140/≥90 mmHg; this time trend also occurred across the four different BP groups, with the higher BP group exhibiting CVE risk earlier during the follow-up. These results were confirmed by the same analysis performed on participants without baseline hypertension. However, such reasonable time trends did not occur when a single baseline BP was used as the primary estimation. We also demonstrated that the predictive values of baseline systolic and diastolic BP that predict CVE occurrence were only 0.6-3.2 and 0.2-3.1% lower, respectively, than those of cumulative BP combined with baseline BP during follow-up. Conclusions: Baseline BP remains a useful indicator for predicting future occurrence of CVEs. Nevertheless, time-weighted cumulative BP could more reliably estimate the CVE risk of higher BP exposure than baseline BP.

11.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34128834

RESUMO

Disordered lysosomal/autophagy pathways initiate and drive pancreatitis, but the underlying mechanisms and links to disease pathology are poorly understood. Here, we show that the mannose-6-phosphate (M6P) pathway of hydrolase delivery to lysosomes critically regulates pancreatic acinar cell cholesterol metabolism. Ablation of the Gnptab gene encoding a key enzyme in the M6P pathway disrupted acinar cell cholesterol turnover, causing accumulation of nonesterified cholesterol in lysosomes/autolysosomes, its depletion in the plasma membrane, and upregulation of cholesterol synthesis and uptake. We found similar dysregulation of acinar cell cholesterol, and a decrease in GNPTAB levels, in both WT experimental pancreatitis and human disease. The mechanisms mediating pancreatic cholesterol dyshomeostasis in Gnptab-/- and experimental models involve a disordered endolysosomal system, resulting in impaired cholesterol transport through lysosomes and blockage of autophagic flux. By contrast, in Gnptab-/- liver the endolysosomal system and cholesterol homeostasis were largely unaffected. Gnptab-/- mice developed spontaneous pancreatitis. Normalization of cholesterol metabolism by pharmacologic means alleviated responses of experimental pancreatitis, particularly trypsinogen activation, the disease hallmark. The results reveal the essential role of the M6P pathway in maintaining exocrine pancreas homeostasis and function, and implicate cholesterol disordering in the pathogenesis of pancreatitis.


Assuntos
Células Acinares/metabolismo , Colesterol/metabolismo , Manosefosfatos/metabolismo , Pâncreas Exócrino/metabolismo , Pancreatite/metabolismo , Células Acinares/patologia , Animais , Colesterol/genética , Modelos Animais de Doenças , Humanos , Manosefosfatos/genética , Camundongos , Camundongos Knockout , Pâncreas Exócrino/patologia , Pancreatite/patologia , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
12.
iScience ; 24(2): 102076, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659870

RESUMO

Arrestin-dependent activation of a G-protein-coupled receptor (GPCR) triggers endocytotic internalization of the receptor complex. We analyzed the interaction between the pattern recognition receptor (PRR) lectin-like oxidized low-density lipoprotein (oxLDL) receptor (LOX-1) and the GPCR angiotensin II type 1 receptor (AT1) to report a hitherto unidentified mechanism whereby internalization of the GPCR mediates cellular endocytosis of the PRR ligand. Using genetically modified Chinese hamster ovary cells, we found that oxLDL activates Gαi but not the Gαq pathway of AT1 in the presence of LOX-1. Endocytosis of the oxLDL-LOX-1 complex through the AT1-ß-arrestin pathway was demonstrated by real-time imaging of the membrane dynamics of LOX-1 and visualization of endocytosis of oxLDL. Finally, this endocytotic pathway involving GPCR kinases (GRKs), ß-arrestin, and clathrin is relevant in accumulating oxLDL in human vascular endothelial cells. Together, our findings indicate that oxLDL activates selective G proteins and ß-arrestin-dependent internalization of AT1, whereby the oxLDL-LOX-1 complex undergoes endocytosis.

13.
Autophagy ; 17(10): 3068-3081, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33213278

RESUMO

Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury. SNAP23 depletion was by knockdown (SNAP23-KD) effected by adenovirus-shRNA (Ad-SNAP23-shRNA/mCherry) treatment of rodent and human pancreatic slices and in vivo by infusion into rat pancreatic duct. In vitro pancreatitis induction by supraphysiological cholecystokinin (CCK) or ethanol plus low-dose CCK were used to assess SNAP23-KD effects on exocytosis and autophagy. Pancreatitis stimuli resulted in SNAP23 translocation from its native location at the plasma membrane to autophagosomes, where SNAP23 would bind and regulate STX17 (syntaxin17) SNARE complex-mediated autophagosome-lysosome fusion. This SNAP23 relocation was attributed to IKBKB/IKKß-mediated SNAP23 phosphorylation at Ser95 Ser120 in rat and Ser120 in human, which was blocked by IKBKB/IKKß inhibitors, and confirmed by the inability of IKBKB/IKKß phosphorylation-disabled SNAP23 mutant (Ser95A Ser120A) to bind STX17 SNARE complex. SNAP23-KD impaired the assembly of STX4-driven basolateral exocytotic SNARE complex and STX17-driven SNARE complex, causing respective reduction of basolateral exocytosis of ZGs and autolysosome formation, with consequent reduction in trypsinogen activation in both compartments. Consequently, pancreatic SNAP23-KD rats were protected from caerulein and alcoholic pancreatitis. This study revealed the roles of SNAP23 in mediating pathological basolateral exocytosis and IKBKB/IKKß's involvement in autolysosome formation, both where trypsinogen activation would occur to cause pancreatitis. SNAP23 is a strong candidate to target for pancreatitis therapy.Abbreviations: AL: autolysosome; AP: acute pancreatitis; AV: autophagic vacuole; CCK: cholecystokinin; IKBKB/IKKß: inhibitor of nuclear factor kappa B kinase subunit beta; SNAP23: synaptosome associated protein 23; SNARE: soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor; STX: syntaxin; TAP: trypsinogen activation peptide; VAMP: vesicle associated membrane protein; ZG: zymogen granule.


Assuntos
Pancreatite , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Doença Aguda , Animais , Autofagia , Exocitose , Humanos , Lisossomos , Pâncreas , Pancreatite/genética , Pancreatite/prevenção & controle , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratos , Tripsina/farmacologia , Proteínas de Transporte Vesicular
14.
Lipids Health Dis ; 19(1): 226, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059672

RESUMO

BACKGROUND: Prediabetes has become a pandemic. This study aimed to identify a better predictor for the incidence of prediabetes, which we hypothesize to be the triglyceride-glucose (TyG) index, a simplified insulin resistance index. We compared its predictive value with the other common risk factors of prediabetes. METHODS: The participants of this analysis were derived from the Risk Evaluation of cAncers in Chinese diabeTic Individuals: a lONgitudinal (REACTION) study. A total of 4543 participants without initial prediabetes or diabetes were followed up for 3.25 years. Using multivariate logistic regression model, the associations between baseline obesity, lipid profiles and non-insulin-based insulin resistance indices with the incidence of prediabetes were analyzed. To assess which is better predictor for the incidence of prediabetes, the area under curves (AUCs) calculated from the receiver operating characteristic curve analyses were used to evaluate and compare with the predictive value of the different indices. RESULTS: During the 3.25 years, 1071 out of the 4543 participants developed prediabetes. Using the logistic regression analysis adjusted for some potential confounders, the risk of incidence of prediabetes increased 1.38 (1.28-1.48) fold for each 1-SD increment of TyG index. The predictive ability (assessed by AUCs) of TyG index for predicting prediabetes was 0.60 (0.58-0.62), which was superior to the indices of obesity, lipid profiles and other non-insulin-based insulin resistance indices. Although the predictive ability of the TyG index was overall similar to fasting plasma glucose (FPG) (P = 0.4340), TyG index trended higher than FPG in females (0.62 (0.59-0.64) vs. 0.59 (0.57-0.61), P = 0.0872) and obese subjects (0.59 (0.57-0.62) vs. 0.57 (0.54-0.59), P = 0.1313). TyG index had superior predictive ability for the prediabetic phenotype with isolated impaired glucose tolerance compared with FPG (P <  0.05) and other indices. Furthermore, TyG index significantly improved the C statistic (0.62 (0.60-0.64)), integrated discrimination improvement (1.89% (1.44-2.33%)) and net reclassification index (28.76% (21.84-35.67%)) of conventional model in predicting prediabetes than other indices. CONCLUSIONS: TyG could be a potential predictor to identify the high risk individuals of prediabetes.


Assuntos
Glicemia/análise , Estado Pré-Diabético/sangue , Triglicerídeos/sangue , China/epidemiologia , Jejum/sangue , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Estado Pré-Diabético/epidemiologia , Estudos Prospectivos , Curva ROC , Fatores de Risco
15.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32051343

RESUMO

SNAP23 is the ubiquitous SNAP25 isoform that mediates secretion in non-neuronal cells, similar to SNAP25 in neurons. However, some secretory cells like pancreatic islet ß cells contain an abundance of both SNAP25 and SNAP23, where SNAP23 is believed to play a redundant role to SNAP25. We show that SNAP23, when depleted in mouse ß cells in vivo and human ß cells (normal and type 2 diabetes [T2D] patients) in vitro, paradoxically increased biphasic glucose-stimulated insulin secretion corresponding to increased exocytosis of predocked and newcomer insulin granules. Such effects on T2D Goto-Kakizaki rats improved glucose homeostasis that was superior to conventional treatment with sulfonylurea glybenclamide. SNAP23, although fusion competent in slower secretory cells, in the context of ß cells acts as a weak partial fusion agonist or inhibitory SNARE. Here, SNAP23 depletion promotes SNAP25 to bind calcium channels more quickly and longer where granule fusion occurs to increase exocytosis efficiency. ß Cell SNAP23 antagonism is a strategy to treat diabetes.


Assuntos
Canais de Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Insulina/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Glucose/metabolismo , Homeostase , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Ratos
16.
Alcohol Clin Exp Res ; 44(4): 777-789, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056245

RESUMO

Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.


Assuntos
Pancreatite Alcoólica/epidemiologia , Acetaldeído/metabolismo , Autofagia , Cálcio/metabolismo , Suscetibilidade a Doenças , Estresse do Retículo Endoplasmático , Etanol/metabolismo , Exocitose , Predisposição Genética para Doença , Humanos , Hiperlipidemias/epidemiologia , Infecções/epidemiologia , NAD/metabolismo , Obesidade/epidemiologia , Pancreatite Alcoólica/metabolismo , Fatores de Proteção , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Proteínas SNARE/metabolismo , Índice de Gravidade de Doença , Fumar/epidemiologia
18.
Endocrine ; 68(1): 93-102, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925734

RESUMO

PURPOSE: The degree of adipose tissue insulin resistance increases in obesity, prediabetes and type 2 diabetes, but whether it associates with prediabetes is unclear. METHODS: This is a cross-sectional study of 426 participants. The degree of adipose tissue insulin resistance was assessed using the index of adipose tissue insulin resistance (Adipo-IRI), calculated as the product of fasting insulin and free fatty acids. The association of adipose tissue insulin resistance and prediabetes was assessed by multivariate logistic regression. Area under curves (AUCs) of receiver operating characteristic cure analyses were calculated to assess their diagnostic value in distinguishing prediabetes of the following: insulin resistance in the adipose tissue and peripheral tissue, general and abdominal obesity, and elevated triglycerides. RESULTS: The median age of the participants was 59 years with males accounting for 47.7%. After adjustment for potential confounding factors, Adipo-IRI was associated with prediabetes and its phenotypes in both genders. The diagnostic value of adipose tissue insulin resistance (AUC, male: 0.71 (95% CI, 0.65-0.77) and female: 0.74 (95% CI, 0.68-0.95)) for prediabetes were superior or similar to peripheral tissue insulin resistance, body mass index, waist circumference and triglycerides. CONCLUSIONS: Adipose tissue insulin resistance is associated with prediabetes and should be considered for use in population studies.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Tecido Adiposo , Índice de Massa Corporal , Estudos Transversais , Feminino , Humanos , Insulina , Masculino , Pessoa de Meia-Idade
19.
J Mol Biol ; 432(5): 1310-1325, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31863749

RESUMO

As one of the leading causes of morbidity and mortality worldwide, diabetes affects an estimated 422 million adults, and it is expected to continue expanding such that by 2050, 30% of the U.S. population will become diabetic within their lifetime. Out of the estimated 422 million people currently afflicted with diabetes worldwide, about 5% have type 1 diabetes (T1D), while the remaining ~95% of diabetics have type 2 diabetes (T2D). Type 1 diabetes results from the autoimmune-mediated destruction of functional ß-cell mass, whereas T2D results from combinatorial defects in functional ß-cell mass plus peripheral glucose uptake. Both types of diabetes are now believed to be preceded by ß-cell dysfunction. T2D is increasingly associated with numerous reports of deficiencies in the exocytosis proteins that regulate insulin release from ß-cells, specifically the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE protein's functionality is further regulated by a variety of accessory factors such as Sec1/Munc18 (SM), double C2-domain proteins (DOC2), and additional interacting proteins at the cell surface that influence the fidelity of insulin release. As new evidence emerges about the detailed mechanisms of exocytosis, new questions and controversies have come to light. This emerging information is also contributing to dialogue in the islet biology field focused on how to correct the defects in insulin exocytosis. Herein we present a balanced review of the role of exocytosis proteins in T2D, with thoughts on novel strategies to protect functional ß-cell mass.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Proteínas SNARE/metabolismo , Animais , Diabetes Mellitus Tipo 2/prevenção & controle , Exocitose , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Proteínas Munc18/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165530, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31398467

RESUMO

BACKGROUND: During pancreatitis, autophagy is activated, but lysosomal degradation of dysfunctional organelles including mitochondria is impaired, resulting in acinar cell death. Retrospective cohort analyses demonstrated an association between simvastatin use and decreased acute pancreatitis incidence. METHODS: We examined whether simvastatin can protect cell death induced by cerulein and the mechanisms involved during acute pancreatitis. Mice were pretreated with DMSO or simvastatin (20 mg/kg) for 24 h followed by 7 hourly cerulein injections and sacrificed 1 h after last injection to harvest blood and tissue for analysis. RESULTS: Pancreatic histopathology revealed that simvastatin reduced necrotic cell death, inflammatory cell infiltration and edema. We found that cerulein triggered mitophagy with autophagosome formation in acinar cells. However, autophagosome-lysosome fusion was impaired due to altered levels of LAMP-1, AMPK and ULK-1, resulting in autophagosome accumulation (incomplete autophagy). Simvastatin abrogated these effects by upregulating LAMP-1 and activating AMPK which phosphorylated ULK-1, resulting in increased formation of functional autolysosomes. In contrast, autophagosomes accumulated in control group during pancreatitis. The effects of simvastatin to promote autophagic flux were inhibited by chloroquine. Mitochondria from simvastatin-treated mice were resistant to calcium overload compared to control, suggesting that simvastatin induced mitochondrial quality control to eliminate susceptible mitochondria. Clinical specimens showed a significant increase in cell-free mtDNA in plasma during pancreatitis compared to normal controls. Furthermore, genetic deletion of parkin abrogated the benefits of simvastatin. CONCLUSION: Our findings reveal the novel role of simvastatin in enhancing autophagic flux to prevent pancreatic cell injury and pancreatitis.


Assuntos
Anticolesterolemiantes/uso terapêutico , Autofagia/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Fagossomos/efeitos dos fármacos , Sinvastatina/uso terapêutico , Doença Aguda , Animais , Anticolesterolemiantes/farmacologia , Ceruletídeo/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Fusão de Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pancreatite/metabolismo , Pancreatite/patologia , Fagossomos/metabolismo , Fagossomos/patologia , Sinvastatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA